Equilibrium & Le Chatelier’s Principle

1. What 2 characteristics define a system at equilibrium?
The forward and reverse reaction rates are equal & the concentrations of the reactants and products are constant.

2. What 3 factors are considered to be stresses on an equilibrium system?
Changes in Temperature, Pressure and Concentration.

3. How does a system at equilibrium respond to a stress?
It will proceed in the direction which relieves the stress.

4. What does “heat” as a product of this reaction indicate? (is it absorbed or released?)
 a. \(\text{CH}_4 + \text{O}_2 \leftrightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{heat} \) (890.3 kJ)

 Heat is released (exothermic).

4b. What does “heat” as a reactant in this reaction indicate? (is it absorbed or released?)
 a. \(\text{NaCl} (s) + \text{heat} \rightarrow \text{Na}^+ + \text{Cl}^- \)

 Heat is absorbed (endothermic).

Using Le Chatelier’s principle, predict how each of the changes would affect the equilibrium systems Ex: Shifts to right (towards products), shifts to left (towards reactants), No change occurs

<table>
<thead>
<tr>
<th>5. (\text{N}_2(g) + 3 \text{H}_2(g) \leftrightarrow 2 \text{NH}_3(g) + 92 \text{ kJ})</th>
<th>6. (\text{CO} (g) + 2 \text{H}_2 (g) \leftrightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ})</th>
</tr>
</thead>
</table>
| a. **Stress:** Adding extra \(\text{H}_2 \)
 Relief: use excess \(\text{H}_2 \)
 How: Shifts \(\rightarrow \) | a. **Stress:** Adding CO
 Relief: Use up excess CO
 How: \(\text{CO} (g) + 2 \text{H}_2 (g) \rightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ} \) |
| b. **Stress:** Extra \(\text{NH}_3 \) (ammonia) is added
 Relief: ammonia is broken down into reactants
 How: \(\text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) + 92 \text{ kJ} \) | b. **Stress:** Removing heat
 Relief: Produce more heat
 How: \(\text{CO} (g) + 2 \text{H}_2 (g) \rightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ} \) |
| c. **Stress:** Adding extra \(\text{N}_2 \)
 Relief: Use up excess \(\text{N}_2 \)
 How: \(\text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) + 92 \text{ kJ} \) | c. **Stress:** Removing \(\text{CH}_3\text{OH} \)
 Relief: Produce more \(\text{CH}_3\text{OH} \)
 How: \(\text{CO} (g) + 2 \text{H}_2 (g) \rightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ} \) |
| d. **Stress:** Removing \(\text{H}_2 \)
 Relief: Stop using/Form more \(\text{H}_2 \)
 How: \(\text{N}_2(g) + 3 \text{H}_2(g) \leftrightarrow 2 \text{NH}_3(g) + 92 \text{ kJ} \) | d. **Stress:** Increasing the pressure
 Relief: reduce pressure by reducing the number of moles
 How: \(\text{CO} (g) + 2 \text{H}_2 (g) \rightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ} \)
 \(\begin{array}{c|c} \text{3 moles} & \text{1 mole} \end{array} \) |
| e. **Stress:** The pressure is increased
 Relief: reduce pressure by reducing the number of moles
 How: \(\text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) + 92 \text{ kJ} \)
 \(\begin{array}{c|c} \text{4 moles} & \text{2 moles} \end{array} \) | e. **Stress:** Adding Heating
 Relief: Stop producing/use up excess heat
 How: \(\text{CO} (g) + 2 \text{H}_2 (g) \rightarrow \text{CH}_3\text{OH} (g) + 18 \text{ kJ} \) |

<table>
<thead>
<tr>
<th>f. Stress: The pressure is decreased</th>
<th>f. Stress: Decreasing the pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relief: increase pressure by increasing the number of moles</td>
<td>Relief: increase pressure by increasing the number of moles</td>
</tr>
<tr>
<td>How: $\text{N}_2(\text{g}) + 3 \text{H}_2(\text{g}) \rightleftharpoons 2 \text{NH}_3(\text{g}) + 92 \text{kJ}$</td>
<td>How: $\text{CO (g)} + 2 \text{H}_2(\text{g}) \rightleftharpoons \text{CH}_3\text{OH (g)} + 18 \text{kJ}$</td>
</tr>
<tr>
<td>4 moles</td>
<td>3 moles</td>
</tr>
<tr>
<td>2 moles</td>
<td>1 mole</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g. Stress: Heating the system</th>
<th>g. Stress: Removing H_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relief: Stop producing/use up excess heat</td>
<td>Relief: stop using up/produce more H_2</td>
</tr>
<tr>
<td>How: $\text{N}_2(\text{g}) + 3 \text{H}_2(\text{g}) \rightleftharpoons 2 \text{NH}_3(\text{g}) + 92 \text{kJ}$</td>
<td>How: $\text{CO (g)} + 2 \text{H}_2(\text{g}) \rightleftharpoons \text{CH}_3\text{OH (g)} + 18 \text{kJ}$</td>
</tr>
</tbody>
</table>

7. $\text{C}_2\text{H}_4(\text{g}) + \text{H}_2(\text{g}) \rightleftharpoons \text{C}_2\text{H}_6(\text{g}) + \text{heat}$

You want to shift the reaction \rightarrow (to the right) to produce more C_2H_6.

What would you do to the following variables to make that happen? (increase/ decrease & why?)

<table>
<thead>
<tr>
<th></th>
<th>a) Pressure:</th>
<th>c) Amount of $\text{H}_2(\text{g})$:</th>
<th>E) Temperature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b) Amount of $\text{C}_2\text{H}_4(\text{g})$:</th>
<th>d) Amount of $\text{C}_2\text{H}_6(\text{g})$:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
<td>Decrease</td>
</tr>
</tbody>
</table>